Fireye NMX2G Intelligent Boiler Load Optimizer


Heating of commercial and institutional buildings presents a case where there are energy savings available through the application of an additional controller able to substantially reduce boiler operation time.

Building owners, boiler engineers, operators and other stakeholders will benefit from this simple and understandable video explanation of some of the inefficiencies associated with boiler operation, and how incorporating a better control method can minimize boiler dry firing (also called standby cycling). Boiler operation costs can be reduced between 10% and 25%, with a commensurate reduction in carbon footprint, by including the Fireye NXM2G control in the boiler control system.

Watch the above video. It's just a few minutes and explains the source of the inefficiency, as well as the solution, in a manner understandable to everyone. More information is available from a combustion product specialist, who can help evaluate the efficiency of your current system or assist with incorporating the latest energy saving features and design into a new installation.

For more information about combustion control and optimization,  contact Combustion Technology, LLC. In Vancouver call 360-253-9600; in Portland call 503-287-2500. Or visit https://combustion-tech.net.

Thermal Dispersion Flow Meters


Thermal dispersion mass flow meters provide an accurate means of mass flow measurement with no moving parts and little or no encroachment on the media flow path. There are a number of different configurations to be found among various manufacturers, but all function in basically the same manner.

Two sensors are exposed to the heat transferring effect of the flowing media. When the media composition is known, the mass flow can be calculated using the meter reading and the pipe cross sectional area. One of the flow meter sensors is heated, the other is allowed to follow the media temperature as a reference. The heat dispersion from the heated sensor is measured and used to calculate mass flow.

Some positive attributes of thermal dispersion flow meters:
  • In-line and insertion configurations available to accommodate very small to large pipe sizes
  • Rugged Construction
  • No moving parts
  • Measure liquid or gas in a wide range of applications
  • Measurement not adversely impacted by changes in pressure or temperature
  • Wide range of process connections
  • In-line versions provide unobstructed flow path
  • Wide turndown suitable for extended flow range
  • Flow rate and totalized flow
  • 4-20 mA output interfaces easily with other instruments and equipment
For more information about thermal dispersion flow meters,  contact Combustion Technology, LLC. In Vancouver call 360-253-9600; in Portland call 503-287-2500. Or visit https://combustion-tech.net.

What is Cascade Control?


Cascade control is a technique used to enable processes with long lags to be controlled with the fastest possible response to process disturbances including setpoint changes, whilst still minimizing the potential for overshoot. This is achieved by controlling a secondary, more responsive process that influences the main process. The main process is controlled using a master PID loop, the output of which is used to determine the setpoint of the secondary process which is controlled by a second PID loop. This second loop is referred to as the slave loop.

Ideal for:
  • Heat treatment furnaces 
  • Vacuum furnaces
  • Autoclaves
  • Semiconductor diffusion
  • Batch reaction vessels 
  • Heat exchangers
  • Crystal growth
  • Distillation columns

For more information on applying controllers to process heating systems, contact Combustion Technology, LLC by calling 800-327-1831 or by visiting their web site at https://combustion-tech.net.

US Power Grids, Oil and Gas Industries, and Risk of Hacking


A report released in June, from the security firm Dragos, describes a worrisome development by a hacker group named, “Xenotime” and at least two dangerous oil and gas intrusions and ongoing reconnaissance on United States power grids.

Multiple ICS (Industrial Control Sectors) sectors now face the XENOTIME threat; this means individual verticals – such as oil and gas, manufacturing, or electric – cannot ignore threats to other ICS entities because they are not specifically targeted.

The Dragos researchers have termed this threat proliferation as the world’s most dangerous cyberthreat since an event in 2017 where Xenotime had caused a serious operational outage at a crucial site in the Middle East. 

The fact that concerns cybersecurity experts the most is that this hacking attack was a malware that chose to target the facility safety processes (SIS – safety instrumentation system).

For example, when temperatures in a reactor increase to an unsafe level, an SIS will automatically start a cooling process or immediately close a valve to prevent a safety accident. The SIS safety stems are both hardware and software that combine to protect facilities from life threatening accidents.

At this point, no one is sure who is behind Xenotime. Russia has been connected to one of the critical infrastructure attacks in the Ukraine.  That attack was viewed to be the first hacker related power grid outage.

This is a “Cause for Concern” post that was published by Dragos on June 14, 2019

“While none of the electric utility targeting events has resulted in a known, successful intrusion into victim organizations to date, the persistent attempts, and expansion in scope is cause for definite concern. XENOTIME has successfully compromised several oil and gas environments which demonstrates its ability to do so in other verticals. Specifically, XENOTIME remains one of only four threats (along with ELECTRUM, Sandworm, and the entities responsible for Stuxnet) to execute a deliberate disruptive or destructive attack.

XENOTIME is the only known entity to specifically target safety instrumented systems (SIS) for disruptive or destructive purposes. Electric utility environments are significantly different from oil and gas operations in several aspects, but electric operations still have safety and protection equipment that could be targeted with similar tradecraft. XENOTIME expressing consistent, direct interest in electric utility operations is a cause for deep concern given this adversary’s willingness to compromise process safety – and thus integrity – to fulfill its mission.

XENOTIME’s expansion to another industry vertical is emblematic of an increasingly hostile industrial threat landscape. Most observed XENOTIME activity focuses on initial information gathering and access operations necessary for follow-on ICS intrusion operations. As seen in long-running state-sponsored intrusions into US, UK, and other electric infrastructure, entities are increasingly interested in the fundamentals of ICS operations and displaying all the hallmarks associated with information and access acquisition necessary to conduct future attacks. While Dragos sees no evidence at this time indicating that XENOTIME (or any other activity group, such as ELECTRUM or ALLANITE) is capable of executing a prolonged disruptive or destructive event on electric utility operations, observed activity strongly signals adversary interest in meeting the prerequisites for doing so.”

The Importance of Gas Composition and Calibration and their Effects on Flow Meter Accuracy

Thermal Flow Meter Calibration for Natural Gas Service

Errors associated with the calibration of flow meters for natural gas service can be costly but can also be mitigated using an advanced flow meter design that allows field-adjustment of the natural gas composition without loss of accuracy.

This outstanding case study, courtesy of Fox Thermal Instruments, discusses the importance of gas composition and calibration and their effects on flow meter accuracy.



For more information on natural gas flow measurement, contact Combustion Technology by calling 360-253-9600 in Vancouver, 503-287-2500 in Portland, or you can visit their website at https://combustion-tech.net.

The Honeywell Maxon CROSSFIRE® Line Burner

The Maxon CROSSFIRE® Burners are nozzle-mixing, modular line burners designed for a variety of fresh and recirculated air process heating applications. The burner is available in a variety of arrangements, including straight, grid and ladder sections. An external blower supplies combustion air.


Or review it in the embedded document below.

For more information about any Honeywell Maxon product, contact Combustion Technology, LLC by calling:

Vancouver: 360-253-9600
Portland: 503-287-2500

Or visit their website at https://combustion-tech.net.